Introduction

The Coraciiformes sensu stricto include three extinct families, the Primobucconidae, the Eocoraciidae, the Geranopteridae, and two Recent families, the Coraciidae and the Brachypteracidae (Mayr 2009). The Primobucconidae are known from the Early Eocene of Europe and North America and the Eocoraciidae are known from the Middle Eocene of Messel, Germany. In addition a nearly complete skeleton of a new genus and species has been described from the Lower Eocene of the Green River Fm., Wyoming, United States (Clarke et al. 2009). This new form, Paracoracias occidentalis, is placed in the suborder Coraci. Incidentally, the name Coracii has been applied to a clade that has been defined as follows: “the stem clade including all taxa more closely related to Coraciidea than to its nearest outgroup” (Clarke et al. 2009: p. 587). This clade definition is equivalent to the content of the Coraciiformes sensu stricto of Mayr (1998).

The Geranopteridae have been described in the Late Eocene or Oligocene of the Phosphorites du Quercy, in France, but in the new excavations they have been found only in Upper Eocene layers (Mayr & Mourer-Chauviré 2000; Mourer-Chauviré & Sigé 2006). They include the species Geranopterus alatus Milne-Edwards, 1892, Geranopterus milneedwardsi Mayr & Mourer-Chauviré, 2000, and some indeterminate Geranopteridae from the locality of Perrière (Mourer-Chauviré & Sigé 2006). In the old collections from Quercy, the age of which is not accurately known, there is also a Coraciiforme s. s. incertae sedis species A, represented by an almost complete tarsometatarsus (PQ 1216) (Mayr & Mourer-Chauviré 2000).

The species Nupharanassa bohemica Mlikovsky, 1999, described from the Lower Miocene locality of Dolnice, Czechia, (MN 4b), initially
fossil remains from fishes (mainly Cyprinidae), amphibians (Salamandridae), lizards (Lacertidae, Anguidae), amphisbaenians, snakes (Scolecodophiids, Natricinae, Viperidae), marsupials (Didelphidae), insectivores (Soricidae, Talpidae), small carnivores, ungulates (Cainotheriidae, “Moschidae”), rodents (Sciuridae, Cricetidae, Eomyidae, Gliridae) and a lagomorph. Bird remains are not numerous and include only some crushed fossil bones of Palaelodidae, Lari-
colidae and a new Coraciidae.

Mont Merle is an unpublished new locality that has not been studied before. Some rodents make it possible to give it a dating. The Eomyid Rhodanomys schlosseri depéret & douxaMi, 1902, is represented by upper molars characterized by a continuous longitudinal ridge, and by their size which is included in the variation range observed at Fornant 11 (engeSSer 1990) and at Chavroches (hugueney et al. 2006). As the distribution of R. schlosseri covers only a short period, these teeth place the Mont Merle locality between the Paulhiac level (MN1) where R. transiens, predecessor of R. schlosseri, is present, and the upper part of the MN 2a level (top of the quarry of Montaigu-le-Blin and locality of La Chaux in Switzerland) where the species is not reported but is replaced by the Eomyid genus Ritteneria.

placed in the family Jacanidae, has been transferred to the genus Geranopterus and has become Geranopterus bohemicus (MLíkovský, 1999) (Mourer-Chauviré 1999).

In Africa Coraciiformes of indeterminate family had been reported from the Early Pliocene of Langebaanweg, South Africa (Rich 1980). These Coraciiformes belong to the family Alcedini-
dae (Olson 1994) and thus Coraciidae are still unknown at the present time in this avifauna. In Europe, the genus Eurystomus is known by an extinct species, Eurystomus beremendensis Kes-
sler, 2010, from the Late Pliocene of Beremend 26, Hungary (MN 16) and by Eurystomus sp., from the Early Pleistocene of Betfia 2 and Betfia 9, Romania (Kessler 2010). In more recent localities the Coraciidae are represented by the Recent species, Coracias garrulus Linnaeus, 1758 (Tyrberg 1998).

The Mont Merle locality (Fig. 1) is situated near the town of Saint-Gérand-le-Puy (Allier, France), an area known for its rich Agenian vertebrate fauna (Viret 1929; Cheneval 1983a; Hugueney 1997). It is a limestone hill constituted by stromatolitic bioconstructions and marly sediments deposited in a lacustrine environment (Wattinne et al. 2003). A quarry was opened here, but it is now filled in. Washing and sieving of marl on the top of this hill yielded various fossil remains from fishes (mainly Cyprinidae), amphibians (Salamandridae), lizards (Lacertidae, Anguidae), amphisbaenians, snakes (Scolecodophiids, Natricinae, Viperidae), marsupials (Didelphidae), insectivores (Soricidae, Talpidae), small carnivores, ungulates (Cainotheriidae, “Moschidae”), rodents (Sciuridae, Cricetidae, Eomyidae, Gliridae) and a lagomorph. Bird remains are not numerous and include only some crushed fossil bones of Palaelodidae, Lari-
colidae and a new Coraciidae.

Mont Merle is an unpublished new locality that has not been studied before. Some rodents make it possible to give it a dating. The Eomyid Rhodanomys schlosseri Depéret & Douxami, 1902, is represented by upper molars characterized by a continuous longitudinal ridge, and by their size which is included in the variation range observed at Fornant 11 (Engesser 1990) and at Chavroches (Hugueney et al. 2006). As the distribution of R. schlosseri covers only a short period, these teeth place the Mont Merle locality between the Paulhiac level (MN1) where R. transiens, predecessor of R. schlosseri, is present, and the upper part of the MN 2a level (top of the quarry of Montaigu-le-Blin and locality of La Chaux in Switzerland) where the species is not reported but is replaced by the Eomyid genus Ritteneria.

FIGURE 1. Location map of the Mont Merle locality, between the classical localities of Saint-Gérand-le-Puy and Montaigu-le-Blin. The contour lines indicate the height above sea level.
Material and methods

The anatomical terminology follows BAUMEL & WITMER 1993, and when necessary HOWARD 1929, and BALLMANN 1969a. The fossil specimens are deposited in the collection of the Université Claude Bernard-Lyon1 (acronym FSL for Faculté des Sciences de Lyon) and in the collection of the Muséum d’Histoire Naturelle de Lyon (acronym ML). Other acronyms are: EC (locality of Escamps); EC3 (locality of Escamps 3), EC4 (locality of Escamps 4), MN (Mammal Neogene), PQ (Phosphorites du Quercy), PRR (locality of Perrière), and STG (Saint-Gérand-le-Puy).

Systematic Palaeontology

Order Coraciiformes sensu stricto (see MAYR 1998)
Family Coraciidae BATSCH, 1788 (see DUBOIS & BOUR 2010)

Miocoracias nov. gen.

Type species: Miocoracias chenevali nov. sp.

Diagnosis: Distal part of tarsometatarsus showing a foramen vasculare distale situated relatively proximally, proximodistally elongate, and obliquely oriented. Trochlea metatarsi IV slightly shorter than trochlea metatarsi III, and trochlea metatarsi II slightly shorter than trochlea metatarsi IV. On the dorsal face trochlea metatarsi III raised and extended by a longitudinal ridge. Trochlea metatarsi III distally splayed. On the plantar face, opening of foramen vasculare distale elongate and narrow. Canalis interosseus distalis open on the plantar side and forming an elongate and narrow sulcus. Trochlea metatarsi II showing a narrow and projecting wing. Proximal rim of trochlea metatarsi III raised compared to the surface of the fossa supratrochlearis plantaris. In distal view trochleae arranged along a weakly arched line.

Included species: Type species only.

Distribution: Early Miocene, Agenian, MN 2a, Saint-Gérand-le-Puy area, Allier, France.

Etymology: Greek, Mio, from the Miocene, and Coracias, modern genus of roller.

Miocoracias chenevali nov. sp.
(Fig. 2.1–2.7)

Holotype: FSL 444 229 right tarsometatarsus, distal part.

Paratype: FSL 444 320 right tibiotarsus, distal part, incompletely preserved.

Diagnosis: As for the genus.

Horizon and locality: Locality of Mont Merle, district of Saint-Gérand-le-Puy, Allier, France. Early Miocene, Agenian, Mammal Neogene Zone MN 2a.

Referred material: ML STG 4048 right ulna. This ulna comes from the old collections and it is not possible to know from which locality it has been gathered.

Dimensions (in mm): Right tarsometatarsus, holotype: Length as preserved, 9.0; Distal width, 5.8; Distal depth, 3.1; Width of trochlea metatarsi III, 2.1; Depth of trochlea metatarsi III, 2.4. Right tibiotarsus: Length as preserved, 11.4; Width of shaft at the level of apophysis interna ligamenti obliqui, 2.6; Depth of shaft at the same level, 2.9; Depth of lateral condyle, 4.5. Right ulna: Total length, 53.7; Proximal width, 5.5; Proximal depth, 3.7; Width of shaft in the middle, 2.3; Depth of shaft in the middle, 2.5; Distal width from the cranial border of condylus dorsalis to top of tuberculum carpale, 5.5; Depth of condylus dorsalis, 4.8.

Etymology: This species is named after Jacques Cheneval in recognition of his numerous and valuable studies on the avifauna of the Saint-Gérand-le-Puy area.

Description and comparisons with the two Recent genera Coracias and Eurystomus

Tarsometatarsus (Fig. 2.1–2.3): On the dorsal face, the foramen vasculare distale is situated more proximally in Miocoracias and it is more proximodistally elongated than in the Recent genera. In Coracias and Eurystomus, the opening is dorsoplantarly orientated, while in Miocoracias the opening is slit-shaped, obliquely heading from the dorsolateral side to the plantaromedial side of the bone. This foramen is situated at the end of the outer extensor groove (HOWARD 1929).
This extensor groove is deeper in *Eurystomus* than in *Coracias*, and it is also very deep in *Miocoracias*. In *Miocoracias*, as in *Eurystomus* and *Coracias*, trochlea metatarsi IV is slightly shorter than trochlea metatarsi III and trochlea metatarsi II is slightly shorter than trochlea metatarsi IV. In the genus *Eurystomus* trochlea metatarsi III shows two projecting rims, separated by a well-expressed groove. This groove is fainter in the genera *Coracias* and *Miocoracias*. In *Eurystomus* and *Coracias* trochlea metatarsi III is relatively narrow, while it is slightly distally splayed in *Miocoracias*.

On the plantar face, in *Miocoracias*, the opening of the foramen vasculare distale is elongate and narrow, while it is more rounded in *Eurystomus* and *Coracias*. The canalis interosseus distalis, which runs from the foramen vasculare distale to the incisura intertrochlearis lateralis is not covered by a bony blade, and forms a narrow, elongate groove on the plantar side. This character is one of the main characteristics of the Coraciiformes s. s. Trochlea metatarsi II is more clearly separated from trochlea metatarsi III in *Miocoracias* than in *Eurystomus* and *Coracias*, and it is narrower than in *Eurystomus* and it shows a wing less projecting plantarly than in *Coracias*. The proximal rim of trochlea metatarsi III is clearly raised compared to the surface of the fossa supratrochlearis plantaris, while in *Eurystomus* and *Coracias* this proximal part is not raised. Trochlea metatarsi IV shows a narrow and projecting wing in *Miocoracias* and *Eurystomus*, while this wing is less developed in *Coracias*. Fossa metatarsi I extends far distally in *Miocoracias* and *Eurystomus*, while it is situated more proximally in *Coracias*.

In distal view the trochlea are arranged on a faintly arched line as in both Recent genera.

Tibiotarsus (Fig. 2.4–2.5): The condylus medialis is not preserved. On the cranial face, the sulcus extensorius and the pons supratendineus are situated on the median axis of the bone, as in the Recent Coraciidae and Brachypteraciidae, while in most of the other Recent birds they are situated on the medial side of the bone. At the proximal part of the condylus lateralis, and on the lateral side of the pons supratendineus, there is a strong, point-shaped tubercle, the apophysis externa ligamenti obliqui (BALLMANN 1969a), and on the medial side there is also a thin, elongate, and well projecting apophysis interna ligamenti obliqui.

Compared to the Recent genera *Coracias* and *Eurystomus*, the distal part of the tibiotarsus is less mediolaterally compressed, and the sulcus extensorius is shallower. The apophysis externa ligamenti obliqui is very sharp and projecting while its development is variable in the Recent forms: some specimens have an almost flat apophysis, situated in the continuation of the condylus lateralis, while some others have a sharp apophysis.

On the caudal face, the condylus medialis shows a wing which projects weakly medially, as in the genera *Eurystomus* and *Coracias*, and the condylus lateralis shows a wing less projecting laterally than in *Eurystomus*, but comparable to that of *Coracias*.

On the lateral face, the condylus lateralis is very rounded and the epicondylus lateralis is hardly indicated, as in *Eurystomus* and *Coracias*.

Ulna (Fig. 2.6–2.7): This ulna shows the characteristic shape of the rollers’ ulnae. It is elongate and slender, with a slight curvature at its proximal part. The shaft is slightly flattened on its caudal side. Compared to the genus *Coracias*, the olecranon is less projecting proximally and wider at its basis. The cotyla dorsalis is extended distally by a long, narrow lip, clearly separated from the cotyla ventralis. This lip is more rounded in *Coracias*. The distal part of the fossil is not very well preserved, but the condylus ventralis is more projecting distally and the tuberculum carpal is sharper in *Miocoracias* than in *Coracias*. Still in *Miocoracias* there is a small depression on the proximal border of the tuberculum carpal, on its cranial side. This depression is absent in the Recent genera *Coracias* and *Eurystomus*.

The shape of the olecranon looks more similar to that of *Eurystomus*, the olecranon of which is short and wide at its basis. In *Miocoracias* the distal lip of the cotyla dorsalis is incurred and medially directed, while in *Eurystomus* it is dorsally directed. On the ventral side the tuberculum ligamenti collateralis ventralis is more projecting ventrally in *Eurystomus*. At the distal part the condylus ventralis is longer in proximodistal direction in *Eurystomus*.

SAPE Proceedings 2013
Comparison with the extinct family Geranopteridae

Tarsometatarsus: The distal part of the tarsometatarsus is known in *Geranopterus alatus* by two specimens from the Late Eocene of Escamps, EC4 n°5 (Mayr & Mourer-Chauviré 2000: fig. 8, Y–Z), and ES n°4. In *Geranopterus* the metatarsal trochleae are shorter and less individualized than in *Miocoracias*. In *Miocoracias* trochlea metatarsi III is more raised on the dorsal face, and it is extended by a longitudinal ridge; the outer extensor groove is deeper. In *Geranopterus* the dorsal surface of the tarsometatarsus is flatter. On the plantar face the proximal rim of trochlea metatarsi III is raised compared to the surface of fossa supratrochlearis plantaris in *Miocoracias* while in *Geranopterus* the two ridges, lateral and

MOURER-CHAUVIRÉ ET AL.: A new coraciid from the Early Miocene of France
medial, of trochlea metatarsi III gradually merge into the surface of this fossa. Trochlea metatarsi III is narrower in Geranopterus than in Miocoracias. The same characteristics are found on a distal tarsometatarsus of G. milneedwardsi, from the Late Eocene of Perrière, n° FSL 330 856, different from G. alatus by its smaller size.

In their phylogenetic analysis Clarke et al. (2009: p. 607) have used the character 68. Tarsometatarsus, distal interosseal canal: present, canal open on plantar side, forming a deep narrow sulcus between trochleae III and IV (0); absent (1). This open canal is coded as absent (1) in Geranopterus while it is coded as present (0) in Eocoracias and in the Recent Coraciidae and Brachypteraciidae. It is coded as (?) for the three species of Primobucconidae included in the analysis. This is clearly inaccurate because this character is an important synapomorphy of the clade including the Primobucconidae, Eocoraciidae, Geranopteridae, Coraciidae and Brachypteraciidae (Mayr et al. 2004; Mayr 2009). This character is not visible in Eocoracias and it is present in the Primobucconidae from the Eocene of France (Mayr et al. 2004) as well as in the Geranopteridae (Mayr & Mourer-Chauviré 2000; Mourer-Chauviré & Sigé 2006).

Geranopterus bohemicus looks very similar to G. alatus and differs from Miocoracias by its shorter trochlea metatarsi with narrow incisurae intertrochlearis, its trochlea metatarsi III which is not raised compared to the dorsal surface of the shaft and not distally splayed. It differs also by the dorsal surface of the shaft, which is flat, and by trochlea metatarsi IV, which is narrower. Finally Mlíkovský indicates in the diagnosis of this species “a rather smooth transition between the trochlea metatarsi terti and fossa supratrochlearis plantaris” (Mlíkovský 1999: p. 122). This characteristic corresponds well to the genus Geranopterus and differs from the genus Miocoracias.

Tibiotarsus: In Geranopterus alatus the tibiotarsus is known by two distal extremities from the locality of Escamps, EC3 n°7 and EC4 n°3 (Mayr & Mourer-Chauviré 2000: fig. 8, T–U), and in G. milneedwardsi by a distal part from the locality of Perrière, n° PRR 2621. In G. alatus the sulcus extensorius and the pons supratendineus are deeper inside the shaft. On the medial side the epicondylus medialis is very projecting. In Miocoracias the pons supratendineus is more cranially brought forward, the apophysis externa ligamenti obliqui is more projecting and the epicondylus medialis is hardly visible.

In G. milneedwardsi the shaft is very narrow compared to the condyles; the sulcus extensorius is faintly indicated; both condyles, lateral and medial, are narrow, very close together, and strongly projecting cranially. The apophysis externa ligamenti obliqui is projecting. The pons supratendineus is situated between the proximal parts of the condyles. Both epicondyles, lateral and medial, are not well marked.

Ulna: In the genus Geranopterus only the distal part of the ulna is known. In this genus, as in Miocoracias, the tuberculum carpale is very sharp but the condylus ventralis is flatter and more proximodistally elongate in Geranopterus (see Mayr & Mourer-Chauviré 2000: fig. 8, K–L).

Comparison with the small forms from Perrière

Two other, smaller forms, designated as Geranopteridae, genus and species indeterminate, have been reported from the late Eocene locality of Perrière, in the Quercy, level MN 17b (Mourer-Chauviré & Sigé 2006). A distal part of tibiotarsus, n° FSL 367088, corresponds to a bird smaller than G. milneedwardsi. It differs from Miocoracias by the fact that the sulcus extensorius and the pons supratendineus are deeper between the condyles. A distal part of tarsometatarsus, n° FSL 367073, corresponds to a bird which was still smaller than the preceding one (Mourer-Chauviré & Sigé 2006: pl. 1, i–j). In this form the shaft is very narrow, and triangular in cross section. Trochlea metatarsi IV is not preserved but trochlea metatarsi II is strongly plantarly displaced. This form differs from Miocoracias by its very narrow shaft and its trochlea metatarsi II plantarly displaced.

Comparison with a Coraciiformes s. s., incertae sedis, species A (n° PQ 1216)

This form is known by an almost complete tarsometatarsus illustrated in Mayr & Mourer-
CHAUVIRÉ (2000: fig. 9G–I). Miocoracias shares with this form the presence of an elongate and oblique distal vascular foramen, situated at the bottom of a deep outer extensor groove. But it differs from it because in Miocoracias trochlea metatarsi II is slightly shorter than trochlea metatarsi III while in PQ 1216 it is distinctly shorter. On the plantar face, unlike Miocoracias, trochlea metatarsi III does not have a raised rim, and its two ridges, lateral and medial, merge gradually into the surface of the fossa.

Discussion

The Coraciiformes sensu stricto are represented at the present time by two families, one restricted to Madagascar, and the other mainly distributed in the tropical regions of the Old World (Fry 2001). As it was first indicated by HARRISON (1979) small non-passerine birds were much diversified in the early Tertiary of the Northern Hemisphere and occupied the ecological niches which are now occupied by the passerines. Among these small non-passerine birds there are stem group representatives of Coraciiformes s. s., Alcediniformes, Upupiformes, Caprimulgiformes, Apodiformes, Coliiformes, Psittaciformes, etc. Stem group representatives of Coraciiformes s.s. are known in the Early Eocene of North America (CLARKE et al. 2009; KSEPKA & CLARKE 2010) where rollers are no longer present. These stem group representatives have progressively disappeared and some orders are now only represented by a few relict families.

The stem group family Geranopteridae is still present in the locality of Dolnice, in Czechia, the age of which is MN 4b (MLIKOVSKY 2002) and thus clearly younger than the age of the type locality of Miocoracias.

The presence of the genus Miocoracias fills a gap between the Eocene and the Recent forms. The small quantity of material found in the Saint-Gérard-le-Puy area can be explained by the fact that this fossil avifauna is mainly composed of waterbirds and only includes a small proportion of terrestrial birds.

The Saint-Gérard avifauna includes a large quantity of forms belonging to families, or subfamilies, the recent distribution of which is mainly tropical. CHENEVAL (1989) already indicated this abundance in the aquatic avifauna, but the same observation can be made for the terrestrial avifauna. The taxa corresponding to a tropical climate are: Anatidae (genus Mionetta), Palaelodidae, Phoenicopteridae, Ciconiidae (tribe Leptoptilini), Threskiornithidae, Pelecanidae, Sagittariidae, Pteroclidae, Psittacidae, Coliidae, Trogonidae and Phoeniculidae. The presence of Coraciidae is in line with this presence of tropical taxa, whether exclusively (taxa with only tropical species, not migrating to temperate zones), or not. In the Recent Coraciidae, most of the species are migratory but they breed and winter inside the intertropical zone, or very close to it (Fry 2001). Two species only are long distance intercontinental migrants, the European Roller (Coracias garrulus) and the Dollarbird (Eurystomus orientalis). These tropical taxa retreated from the high and middle latitudes during the second half of the Miocene and the Pliocene, leaving in some cases emergent long-distance migrants (LOUCHART 2008).

Acknowledgements

We thank M. MALHURET who allowed us access to the Mont Merle, Marion PETIT who helps us to collect fossil remains, Didier BERTHET for the loan of the material from the Muséum de Lyon, and Christine LEFÈVRE, from the Muséum national d’Histoire naturelle de Paris, for the loan of comparative material. We thank Antoine LOUCHART and Marco PAVIA for their careful comments which have improved the manuscript.

References

DUBOIS, A. & BOUR, R. (2010): The distinction between family-series and class-series nomina in zoological nomenclature, with reemphasis on the nomina created by Batsch (1788, 1789) and on the higher nomenclature of turtles. – Bonn zoological Bulletin, 57: 149–171.

SAPE Proceedings 2013

MOURER-CHAUVIRÉ ET AL.: A new coraciid from the Early Miocene of France

Appendix

Updated list of the avian species reported in the whole of the localities known as “Saint-Gérand-le-Puy”. The material from the old collections comes from different quarries and its age is not accurately known; this age can be MN 1, MN 1/2, or MN 2a (HUGUENAY 1997). However the largest part of the quarries has yielded fossil material corresponding to the MN 2a zone. This list is founded upon the following works: BALLMANN 1969b; CHENEVAL 1983b, 1984; CHENEVAL & ESCUILLÉ 1992; MOURER-CHAUVRÈ 1995; BOCHENSKI 1997; MILNE-EDWARD 1998; MOURER-CHAUVRÈ 2000; MILNE-EDWARD & GÖHLICH 2000; MILNE-EDWARD 2002; HUGUENAY et al. 2003; GÖHLICH & MOURER-CHAUVRÈ 2005; DE PIETRI et al. 2011a, 2011b, 2012; MAYR & SMITH 2012; DE PIETRI & MAYR 2012; DE PIETRI 2013. The systematic order follows the list of the International Ornithologists’ Union (GILL & DONSKER 2012). Some modifications brought by MILNE-EDWARD (2002) have not been integrated because they do not seem well-founded.

O. Galliformes

F. Quercymegapodiidae MOURER-CHAUVRÈ, 1992
Genus Ameripodius ALVARENGA, 1995
Ameripodius alexis MOURER-CHAUVRÈ, 2000
Genus Palaeortyx MILNE-EDWARDS, 1869
Palaeortyx gallica MILNE-EDWARDS, 1869
Palaeortyx brevipes MILNE-EDWARDS, 1869
Palaeortyx priscus (MILNE-EDWARDS, 1869) syn. Palaeortyx intermedius BALLMANN, 1966
Palaeortyx phasianoides MILNE-EDWARDS, 1869
Palaeortyx media MILNE-EDWARDS, 1869 (nomen nudum)

O. Anseriformes

F. Anatidae LEACH, 1820
Genus Mionetta LIVINGEY & MARTIN, 1888
Mionetta blandari MILNE-EDWARDS, 1863
Mionetta consobrina (MILNE-EDWARDS, 1867)
Mionetta natator (MILNE-EDWARDS, 1867)
Genus Cygnopotus LAMBRICHT, 1931
Cygnopotus alphtoni CHENEVAL, 1984
O. Gaviiformes

F. Gaviidae COUES, 1903
Genus Colymboides MILNE-EDWARDS, 1867
Colymboides minutus MILNE-EDWARDS, 1867
Genus *Nectornis* Cheneval, 1984

Nectornis miocaenus (Milne-Edwards, 1867)

O. Accipitriformes

F. Sagittariidae Grandori & Grandori, 1935

Genus *Pelargonopappus* Stejneger, 1885

Pelargonopappus magnus (Milne-Edwards, 1868)

F. Accipitridae Vieillot, 1816

Genus *Aquilavus* Lambecht, 1933

Aquilavus depredator (Milne-Edwards, 1863)

Aquilavus priscus (Milne-Edwards, 1863)

Genus *Milvus* Lécède, 1899

Milvus deperditus Milne-Edwards, 1871

Genus *Promilio* Wetmore, 1958

Promilio incertus (Gaillard, 1939)

Genus *Palaeohierax* Milne-Edwards, 1871

Palaeohierax gervaisii (Milne-Edwards, 1869)

O. Otidiformes

F. Otididae (Bonaparte, 1831)

Genus *Otis* Linnaeus, 1758

Otis agilis Milne-Edwards, 1871 (nomen nudum)

O. Gruiformes

F. Rallidae Vigors, 1825

Genus *Palaeoaramides* Lambecht, 1933

Palaeoaramides christyi (Milne-Edwards, 1869), syn. *Palaeoaramides eximius* (Milne-Edwards, 1869)

Genus *Paraortygometra* Lambecht, 1933

Paraortygometra porzanoides (Milne-Edwards, 1869)

F. Gruidae Vigors, 1825

Genus *Palaeogrus* Portis, 1884

Palaeogrus excelsus (Milne-Edwards, 1868)

Genus *Probalearica* Lambecht, 1933

Probalearica problematica (Milne-Edwards, 1869)

O. Charadriiformes

F. Haematopodidae Bonaparte, 1831

New material to be described (De Pietri et al. 2012)

F. Recurvirostridae Bonaparte, 1831

Genus *Himantopus* Brehm, 1850

Himantopus brevipes Milne-Edwards, 1871 (nomen nudum)

O. Procellariiformes

F. Procellariidae Leach, 1820

Indeterminate genus

O. Phoenicopteriformes

F. Palaelodidae (Stejneger, 1885)

Genus *Palaelodus* Milne-Edwards, 1863

Palaelodus cassinipes Milne-Edwards, 1863

Genus *Megapalaeolodus* Miller, 1944

Megapalaeolodus goliath (Milne-Edwards, 1868)

F. Phoenicopteridae Bonaparte, 1831

Genus *Phoenicopterus* Linnaeus, 1758

Phoenicopterus croizeti Gervais, 1852

O. Ciconiiformes

F. Ciconiidae Gray, 1840

Genus *Grallavis* Cheneval, 1984

Grallavis edwardsii (Lydekker, 1891b)

O. Pelecaniformes

F. Threskiornithidae Richmond, 1917

Genus *Gerandibis* de Pietri, 2013

Gerandibis pagana (Milne-Edwards, 1868)

syn. *Milnea gracilis* Lydekker, 1891a (Cheneval 1984)

F. Ardeidae Leach, 1820

Genus *Proardeola* Harrison, 1979

Proardeola walkerii Harrison, 1979

F. Pelecanidae Rafinesque, 1815

Genus *Miopelecanus* Cheneval, 1984

Miopelecanus gracilis (Milne-Edwards, 1863)

O. Suliformes

F. Sulidae Reichenbach, 1849

cf. Genus *Empheresula* Harrison, 1975

cf. *Empheresula arvernensis* (Milne-Edwards, 1867)

F. Phalacrocoracidae Reichenbach, 1850

Genus *Oligocorax* Lambecht, 1933

Oligocorax littoralis (Milne-Edwards, 1863)

Genus *Nectornis* Cheneval, 1984

Nectornis miocaenus (Milne-Edwards, 1867)
Suborder Laromorphae De Pietri et al., 2011a
F. Laricolidae De Pietri et al., 2011a
Genus Laricola Milne-Edwards, 1868
Laricola desnoyersii (Milne-Edwards, 1863)
Laricola elegans (Milne-Edwards, 1868)
Laricola totanoides (Milne-Edwards, 1868)
Laricola intermedia De Pietri et al., 2011a
Laricola robusta De Pietri et al., 2011a
Family incertae sedis
Genus Sternalara De Pietri et al., 2011a
Sternalara minuta De Pietri et al., 2011a
Sternalara milneedwardsi De Pietri et al., 2011a

O. Pteroclidiformes
F. Pteroclididae Bonaparte, 1831
Genus Leptoganga Mourer-Chauviré, 1993
Leptoganga sepultus (Milne-Edwards, 1869)
Genus Gerandia Lambrechts, 1933
Gerandia calcaria (Milne-Edwards, 1869)

O. Psittaciformes
F. Psittacidae Illiger, 1811
Genus Archaeopsittacus Lambrechts, 1933
Archaeopsittacus verreauxii (Milne-Edwards, 1871)

O. Strigiformes
F. Tytonidae Ridgway, 1914
Genus Necrobyas Milne-Edwards, 1892
Necrobyas arvernensis (Milne-Edwards, 1863)

Genus Proxybris Brodkorb, 1970
Proxybris antiqua (Milne-Edwards, 1863)
F. Strigidae Vigors, 1825
Genus Mioglaux Milne-Kovsky, 1998
Mioglaux poirrieri (Milne-Edwards, 1863)

O. Apodiformes
F. Apodidae Hartert, 1897
Genus Procypseloides Harrison, 1984
Procypseloides ignotus (Milne-Edwards, 1871)

O. Coliiformes
F. Coliidae Swainson, 1837
Genus Limnatornis Milne-Edwards, 1871
Limnatornis paludicola Milne-Edwards, 1871
Limnatornis archiaci (Milne-Edwards, 1871)

O. Trogoniformes
F. Trogonidae Lesson, 1828
Genus Paratrogon Lambrechts, 1933
Paratrogon gallicus (Milne-Edwards, 1871)

O. Coraciiformes
F. Coraciidae Batsch, 1788
Genus Miocoracias nov. gen.
Miocoracias chenevali nov. spec. (this paper)

O. Bucerotiformes
F. Phoeniculidae Bonaparte, 1831
Genus Phirriculus Milne-Kovsky & Göhlisch, 2000
Phirriculus pinicola Milne-Kovsky & Göhlisch, 2000

O. Piciformes
F. Picidae Vigors, 1825
Genus Piculoides De Pietri et al., 2011b
Piculoides saucetensis De Pietri et al., 2011b

O. Passeriformes
F. Laniidae Rafinesque, 1815
Genus Lanius Linnaeus, 1758
Lanius miocaenus Linnaeus, 1758
Lanius septicus Linnaeus, 1758

F. Ploceidae Sundevall, 1836
Genus Passer Brisson, 1760
Passer sp.

F. Motacillidae Horsfield, 1821
Genus Motacilla Linnaeus, 1758
Motacilla alba Linnaeus, 1758
Motacilla cinerea Linnaeus, 1758

F. Fringillidae Vigors, 1825
Genus Loxia Linnaeus, 1758
Loxia sp. 1
Loxia sp. 2